Weakly Mixing Invariant Tori of Hamiltonian Systems

نویسندگان

  • Oliver Knill
  • O. Knill
چکیده

We note that every finite or infinite dimensional real-analytic Hamiltonian system with a quasi-periodic invariant KAM torus of finite dimension d ≥ 2 can be perturbed in such a way that the new real-analytic Hamiltonian system has a weakly mixing invariant torus of the same dimension.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invariant Tori of Dissipatively Perturbed Hamiltonian Systems under Symplectic Discretization

In a recent paper, Stooer showed that weakly attractive invariant tori of dissipative perturbations of integrable Hamiltonian systems persist under symplectic numerical discretizations, under a very weak restriction on the step size. Stooer's proof works directly with the discrete scheme. In this note we show how such a result, together with approximation estimates, can be obtained by combining...

متن کامل

Persistence of lower dimensional invariant tori on sub-manifolds in Hamiltonian systems

Chow, Li and Yi in [2] proved that the majority of the unperturbed tori on submanifolds will persist for standard Hamiltonian systems. Motivated by their work, in this paper, we study the persistence and tangent frequencies preservation of lower dimensional invariant tori on smooth sub-manifolds for real analytic, nearly integrable Hamiltonian systems. The surviving tori might be elliptic, hype...

متن کامل

Fast Numerical Algorithms for the Computation of Invariant Tori in Hamiltonian Systems

In this paper, we develop numerical algorithms that use small requirements of storage and operations for the computation of invariant tori in Hamiltonian systems (exact symplectic maps and Hamiltonian vector fields). The algorithms are based on the parameterization method and follow closely the proof of the KAM theorem given in [LGJV05] and [FLS07]. They essentially consist in solving a functio...

متن کامل

The Spectral Data for Hamiltonian Stationary Lagrangian Tori in R. Ian Mcintosh and Pascal Romon

Hamiltonian stationary Lagrangian submanifolds are solutions of a natural and important variational problem in Kähler geometry. In the particular case of surfaces in Euclidean 4-space, it has recently been proved that the Euler–Lagrange equation is a completely integrable system, which theory allows us to describe all such 2-tori. This article determines the spectral data, in the integrable sys...

متن کامل

Invariant tori for commuting Hamiltonian PDEs

We generalize to some PDEs a theorem by Nekhoroshev on the persistence of invariant tori in Hamiltonian systems with r integrals of motion and n degrees of freedom, r ≤ n. The result we get ensures the persistence of an r-parameter family of r-dimensional invariant tori. The parameters belong to a Cantor-like set. The proof is based on the Lyapunof-Schmidt decomposition and on the standard impl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998